62 research outputs found

    Coloring non-crossing strings

    Full text link
    For a family of geometric objects in the plane F={S1,,Sn}\mathcal{F}=\{S_1,\ldots,S_n\}, define χ(F)\chi(\mathcal{F}) as the least integer \ell such that the elements of F\mathcal{F} can be colored with \ell colors, in such a way that any two intersecting objects have distinct colors. When F\mathcal{F} is a set of pseudo-disks that may only intersect on their boundaries, and such that any point of the plane is contained in at most kk pseudo-disks, it can be proven that χ(F)3k/2+o(k)\chi(\mathcal{F})\le 3k/2 + o(k) since the problem is equivalent to cyclic coloring of plane graphs. In this paper, we study the same problem when pseudo-disks are replaced by a family F\mathcal{F} of pseudo-segments (a.k.a. strings) that do not cross. In other words, any two strings of F\mathcal{F} are only allowed to "touch" each other. Such a family is said to be kk-touching if no point of the plane is contained in more than kk elements of F\mathcal{F}. We give bounds on χ(F)\chi(\mathcal{F}) as a function of kk, and in particular we show that kk-touching segments can be colored with k+5k+5 colors. This partially answers a question of Hlin\v{e}n\'y (1998) on the chromatic number of contact systems of strings.Comment: 19 pages. A preliminary version of this work appeared in the proceedings of EuroComb'09 under the title "Coloring a set of touching strings

    Robustness of Distances and Diameter in a Fragile Network

    Get PDF
    A property of a graph G is robust if it remains unchanged in all connected spanning subgraphs of G. This form of robustness is motivated by networking contexts where some links eventually fail permanently, and the network keeps being used so long as it is connected. It is then natural to ask how certain properties of the network may be impacted as the network deteriorates. In this paper, we focus on two particular properties, which are the diameter, and pairwise distances among nodes. Surprisingly, the complexities of deciding whether these properties are robust are quite different: deciding the robustness of the diameter is coNP-complete, whereas deciding the robustness of the distance between two given nodes has a linear time complexity. This is counterintuitive, because the diameter consists of the maximum distance over all pairs of nodes, thus one may expect that the robustness of the diameter reduces to testing the robustness of pairwise distances. On the technical side, the difficulty of the diameter is established through a reduction from hamiltonian paths. The linear time algorithm for deciding robustness of the distance relies on a new characterization of two-terminal series-parallel graphs (TTSPs) in terms of excluded rooted minor, which may be of independent interest

    Distance Labeling Schemes for Cube-Free Median Graphs

    Get PDF
    Distance labeling schemes are schemes that label the vertices of a graph with short labels in such a way that the distance between any two vertices u and v can be determined efficiently by merely inspecting the labels of u and v, without using any other information. One of the important problems is finding natural classes of graphs admitting distance labeling schemes with labels of polylogarithmic size. In this paper, we show that the class of cube-free median graphs on n nodes enjoys distance labeling scheme with labels of O(log^3 n) bits

    Almost-Optimal Deterministic Treasure Hunt in Arbitrary Graphs

    Get PDF
    A mobile agent navigating along edges of a simple connected graph, either finite or countably infinite, has to find an inert target (treasure) hidden in one of the nodes. This task is known as treasure hunt. The agent has no a priori knowledge of the graph, of the location of the treasure or of the initial distance to it. The cost of a treasure hunt algorithm is the worst-case number of edge traversals performed by the agent until finding the treasure. Awerbuch, Betke, Rivest and Singh [Baruch Awerbuch et al., 1999] considered graph exploration and treasure hunt for finite graphs in a restricted model where the agent has a fuel tank that can be replenished only at the starting node s. The size of the tank is B = 2(1+?)r, for some positive real constant ?, where r, called the radius of the graph, is the maximum distance from s to any other node. The tank of size B allows the agent to make at most {? B?} edge traversals between two consecutive visits at node s. Let e(d) be the number of edges whose at least one extremity is at distance less than d from s. Awerbuch, Betke, Rivest and Singh [Baruch Awerbuch et al., 1999] conjectured that it is impossible to find a treasure hidden in a node at distance at most d at cost nearly linear in e(d). We first design a deterministic treasure hunt algorithm working in the model without any restrictions on the moves of the agent at cost ?(e(d) log d), and then show how to modify this algorithm to work in the model from [Baruch Awerbuch et al., 1999] with the same complexity. Thus we refute the above twenty-year-old conjecture. We observe that no treasure hunt algorithm can beat cost ?(e(d)) for all graphs and thus our algorithms are also almost optimal

    Black Hole Search with Finite Automata Scattered in a Synchronous Torus

    Full text link
    We consider the problem of locating a black hole in synchronous anonymous networks using finite state agents. A black hole is a harmful node in the network that destroys any agent visiting that node without leaving any trace. The objective is to locate the black hole without destroying too many agents. This is difficult to achieve when the agents are initially scattered in the network and are unaware of the location of each other. Previous studies for black hole search used more powerful models where the agents had non-constant memory, were labelled with distinct identifiers and could either write messages on the nodes of the network or mark the edges of the network. In contrast, we solve the problem using a small team of finite-state agents each carrying a constant number of identical tokens that could be placed on the nodes of the network. Thus, all resources used in our algorithms are independent of the network size. We restrict our attention to oriented torus networks and first show that no finite team of finite state agents can solve the problem in such networks, when the tokens are not movable. In case the agents are equipped with movable tokens, we determine lower bounds on the number of agents and tokens required for solving the problem in torus networks of arbitrary size. Further, we present a deterministic solution to the black hole search problem for oriented torus networks, using the minimum number of agents and tokens

    Rendezvous in Networks in Spite of Delay Faults

    Full text link
    Two mobile agents, starting from different nodes of an unknown network, have to meet at the same node. Agents move in synchronous rounds using a deterministic algorithm. Each agent has a different label, which it can use in the execution of the algorithm, but it does not know the label of the other agent. Agents do not know any bound on the size of the network. In each round an agent decides if it remains idle or if it wants to move to one of the adjacent nodes. Agents are subject to delay faults: if an agent incurs a fault in a given round, it remains in the current node, regardless of its decision. If it planned to move and the fault happened, the agent is aware of it. We consider three scenarios of fault distribution: random (independently in each round and for each agent with constant probability 0 < p < 1), unbounded adver- sarial (the adversary can delay an agent for an arbitrary finite number of consecutive rounds) and bounded adversarial (the adversary can delay an agent for at most c consecutive rounds, where c is unknown to the agents). The quality measure of a rendezvous algorithm is its cost, which is the total number of edge traversals. For random faults, we show an algorithm with cost polynomial in the size n of the network and polylogarithmic in the larger label L, which achieves rendezvous with very high probability in arbitrary networks. By contrast, for unbounded adversarial faults we show that rendezvous is not feasible, even in the class of rings. Under this scenario we give a rendezvous algorithm with cost O(nl), where l is the smaller label, working in arbitrary trees, and we show that \Omega(l) is the lower bound on rendezvous cost, even for the two-node tree. For bounded adversarial faults, we give a rendezvous algorithm working for arbitrary networks, with cost polynomial in n, and logarithmic in the bound c and in the larger label L

    Lock-in Problem for Parallel Rotor-router Walks

    Get PDF
    The rotor-router model, also called the Propp machine, was introduced as a deterministic alternative to the random walk. In this model, a group of identical tokens are initially placed at nodes of the graph. Each node maintains a cyclic ordering of the outgoing arcs, and during consecutive turns the tokens are propagated along arcs chosen according to this ordering in round-robin fashion. The behavior of the model is fully deterministic. Yanovski et al.(2003) proved that a single rotor-router walk on any graph with m edges and diameter DD stabilizes to a traversal of an Eulerian circuit on the set of all 2m directed arcs on the edge set of the graph, and that such periodic behaviour of the system is achieved after an initial transient phase of at most 2mD steps. The case of multiple parallel rotor-routers was studied experimentally, leading Yanovski et al. to the conjecture that a system of k \textgreater{} 1 parallel walks also stabilizes with a period of length at most 2m2m steps. In this work we disprove this conjecture, showing that the period of parallel rotor-router walks can in fact, be superpolynomial in the size of graph. On the positive side, we provide a characterization of the periodic behavior of parallel router walks, in terms of a structural property of stable states called a subcycle decomposition. This property provides us the tools to efficiently detect whether a given system configuration corresponds to the transient or to the limit behavior of the system. Moreover, we provide polynomial upper bounds of O(m4D2+mDlogk)O(m^4 D^2 + mD \log k) and O(m5k2)O(m^5 k^2) on the number of steps it takes for the system to stabilize. Thus, we are able to predict any future behavior of the system using an algorithm that takes polynomial time and space. In addition, we show that there exists a separation between the stabilization time of the single-walk and multiple-walk rotor-router systems, and that for some graphs the latter can be asymptotically larger even for the case of k=2k = 2 walks

    Almost-Optimal Deterministic Treasure Hunt in Arbitrary Graphs

    Full text link
    A mobile agent navigating along edges of a simple connected graph, either finite or countably infinite, has to find an inert target (treasure) hidden in one of the nodes. This task is known as treasure hunt. The agent has no a priori knowledge of the graph, of the location of the treasure or of the initial distance to it. The cost of a treasure hunt algorithm is the worst-case number of edge traversals performed by the agent until finding the treasure. Awerbuch, Betke, Rivest and Singh [3] considered graph exploration and treasure hunt for finite graphs in a restricted model where the agent has a fuel tank that can be replenished only at the starting node ss. The size of the tank is B=2(1+α)rB=2(1+\alpha)r, for some positive real constant α\alpha, where rr, called the radius of the graph, is the maximum distance from ss to any other node. The tank of size BB allows the agent to make at most B\lfloor B\rfloor edge traversals between two consecutive visits at node ss. Let e(d)e(d) be the number of edges whose at least one extremity is at distance less than dd from ss. Awerbuch, Betke, Rivest and Singh [3] conjectured that it is impossible to find a treasure hidden in a node at distance at most dd at cost nearly linear in e(d)e(d). We first design a deterministic treasure hunt algorithm working in the model without any restrictions on the moves of the agent at cost O(e(d)logd)\mathcal{O}(e(d) \log d), and then show how to modify this algorithm to work in the model from [3] with the same complexity. Thus we refute the above twenty-year-old conjecture. We observe that no treasure hunt algorithm can beat cost Θ(e(d))\Theta(e(d)) for all graphs and thus our algorithms are also almost optimal

    Tight Bounds for Black Hole Search with Scattered Agents in Synchronous Rings

    Full text link
    We study the problem of locating a particularly dangerous node, the so-called black hole in a synchronous anonymous ring network with mobile agents. A black hole is a harmful stationary process residing in a node of the network and destroying destroys all mobile agents visiting that node without leaving any trace. We consider the more challenging scenario when the agents are identical and initially scattered within the network. Moreover, we solve the problem with agents that have constant-sized memory and carry a constant number of identical tokens, which can be placed at nodes of the network. In contrast, the only known solutions for the case of scattered agents searching for a black hole, use stronger models where the agents have non-constant memory, can write messages in whiteboards located at nodes or are allowed to mark both the edges and nodes of the network with tokens. This paper solves the problem for ring networks containing a single black hole. We are interested in the minimum resources (number of agents and tokens) necessary for locating all links incident to the black hole. We present deterministic algorithms for ring topologies and provide matching lower and upper bounds for the number of agents and the number of tokens required for deterministic solutions to the black hole search problem, in oriented or unoriented rings, using movable or unmovable tokens
    corecore